京都大学OCWで3回生向けに後期に行われたガロア理論の講義を要約する記事を書いていますが、全体の流れがある程度俯瞰できるようなものがあった方が良さそうなので、目次を作ります。
※ 章立ては予告なく変更する場合があります。
目次
第1回(10月7日)2限
第1回(10月7日)3限
- 多項式の規約性の判定
- $k$ 自己同型による変換
- アイゼンシュタインの判定法
- 素イデアルを法とする多項式との関係
- 体の標数とフロべニウス
- 標数の定義
- フロベニウス準同型の定義
- 体の拡大
- 拡大体, 部分体の定義
- 中間体の定義
- 拡大次数の定義
- 体の生成
- 拡大次数の性質