2022.11.24 米田埋め込みは連続関手である $\mathcal{Set}$ を集合の圏とし、$\mathcal{C}$ を局所小圏とします。$\hat{\mathcal{C}} = \mathcal{Set}^{\mathcal{C}^{op}}$, $h_c ... 続きを読む
2022.11.18 リーマン幾何学の捩れテンソルの意味 : 最短性と真っ直ぐさ(接続の幾何:番外編1) 捩れテンソル (捩率テンソル) について調べて、矢野健太郎先生の「接続の幾何学」という本を呼んでいたら、なぜ捩れテンソルが現れる理由が分かりにくいのかわかった気がしました。本記事ではそれを紹介しようと思います。 ... 続きを読む
2022.11.14 【圏論】部分対象分類子の冪のevalが要素記号で表される理由 $\mathcal{C}$ を圏とし、$\Omega$ を $\mathcal{C}$ の部分対象分類子 (subobject classifier) とます。$X \in Ob(C)$ に対し以下の冪 $$\O... 続きを読む
2022.11.04 接続の捩れと接枠バンドル(接続の幾何3) 本記事は接続の捩れを理解することを目的としたシリーズ記事、接続の幾何シリーズの3回目の記事です。前回は一般の主束の接続とその曲率について述べました。 「ファイバー束の接続(接続の幾何1)」 「主束の接続と... 続きを読む